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Abstract

An energy finite element analysis (EFEA) formulation for computing the high frequency behavior of
plate structures in contact with a dense fluid is presented. The heavy fluid loading effect is incorporated in
the derivation of the EFEA governing differential equations and in the computation of the power transfer
coefficients between plate members. The new formulation is validated through comparison of EFEA results
to classical techniques such as statistical energy analysis (SEA) method and the modal decomposition
method for bodies of revolution. Good correlations are observed and the advantages of the EFEA
formulation are identified.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is often necessary to compute high-frequency vibration of marine structures that are in
contact with a dense fluid. This information can be useful in designing marine vehicles that exhibit
reduced acoustic signatures and self-noise characteristics, and for reducing interior noise levels in
passenger and crew compartments. In the past an energy finite element analysis (EFEA)
formulation has been developed for computing the vibration of larger scale dry structures and
marine vehicles at high frequencies [1–3]. The EFEA developments were validated by comparing
numerical EFEA results to available test data, by comparing EFEA solutions with results
computed by very dense conventional finite element models, and by comparing EFEA results to
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statistical energy analysis (SEA) results. In this paper, a new development to account for fluid
loading in the existing EFEA formulation is presented. Considerable work has been performed for
the dynamic and acoustic response of plates under heavy fluid loading [4–17]. Generally, below
the coincidence frequency the fluid effect is expressed as added mass while radiation into the fluid
occurs only by the edges and the corners of a finite plate. Several models are available in the
literature for evaluating the radiation efficiency below the coincidence frequency [8,18–20]. Above
coincidence frequency the fluid loading effect is represented only in terms of the radiation
damping [5,21]. In this paper, an EFEA formulation for thin elastic plates in contact with a heavy
fluid is presented and validated. Only the exterior fluid loading on one side of plates is considered
here. The EFEA has been developed recently for high-frequency structural/acoustic simulations
[22–28] and constitutes an alternative formulation to the established SEA method. In EFEA, the
primary variable is defined as the time and space averaged energy density. The governing
differential equations are developed with respect to the energy density, and a finite element
approach is employed for the numerical solution. The EFEA formulation was validated for
analyzing dry marine structures through comparison of the EFEA results to experimental data
and to SEA results [1]. Overall, the EFEA constitutes a wave approach for high-frequency
analysis while the SEA is a modal approach. In previous work, the heavy fluid loading effect has
not been included in the EFEA formulation.
The major stages in the evolution of analytical approaches for coupled fluid–structure

interaction are summarized and discussed by Junger [29] and Crighton [30]. Junger [29] identified
a number of milestones in the understanding of the fluid–structure interaction, such as the
asymptotic evaluation of the far field for baffled, infinite planar, and cylindrical structures using
stationary phase integration and inverse wavenumber transform. The explicit farfield solution of
locally excited, radiation-loaded infinite plates and cylindrical shells was also overviewed [29].
Crighton [30] summarized the progress that has been made using complex integral transform
techniques and methods of asymptotic singular perturbation theory in analytical developments.
Computational methods based on finite element and boundary element formulations have been

developed for performing coupled fluid–structure computations [31]. Methods for modelling fluid
effects are also available in some commercial finite element analysis (FEA) codes [32,33]. An
approach for analyzing complex structures under heavy fluid loading by employing a combination
of analytical and FEA techniques was also presented [34]. It was suggested that fluid-loaded,
nearly planar large structural elements can be treated as structures in a vacuum with equivalent
material properties. Then the equivalent structure could be analyzed by FEA techniques [34].
In high frequencies, when the dimension of the structure is large with respect to the wavelength,

FEA-based methods become infeasible. SEA is a mature and established approach for high-
frequency structural/acoustic analysis [35–38]. In SEA, a vibro-acoustic system is divided into
subsystems of similar modes. The lumped averaged energy within each subsystem of similar
modes comprises the primary SEA variable and the power transferred between subsystems is
expressed in terms of coupling loss factors. Crighton [30] discussed some aspects of incorporating
heavy fluid loading effects into SEA. Resonance frequencies and mode shapes that included the
effect of fluid loading were utilized in defining the dynamics of the corresponding subsystems. The
influence of the heavy fluid loading on coupling loss factor across a rib between two plates was
investigated [39,40]. It was demonstrated that fluid loading tends to mend the discontinuity
introduced by a rib in a panel. The mending is expressed in terms of an increase in the
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transmission efficiency across the rib. In SEA the power transferred from structural subsystems to
an acoustic is expressed in terms of the radiation efficiency. Very early efforts were made in
identifying properly the radiation efficiency below the coincidence frequency. The radiation
efficiency was determined by several factors, such as the plate dimensions, the material properties
of the plate and the fluid, and the excitation [41]. The effect of the fluid loading on the acoustic
radiation from an infinite plate subjected to a point or to a line force or moment excitation was
identified [5]. The radiation and the transmission across simple line supports of steel plates with
water on one side was discussed in Ref. [6]. The acoustic power radiated by thin panels excited by
turbulent-boundary-layer wall pressure was estimated by a modal method and employed in an
SEA application [8]. A precise mathematical formulation for the acoustic radiation efficiency of a
rectangular panel was developed [19]. An alternative method for determining numerically the
radiation efficiency for point excited plates was published [20]. The new approach was employed
in SEA computations for underwater noise radiated from ship hulls and the calculations
were compared favorably to test data. For light damped plates and a reverberant vibration field,
the radiation from the flexural near field around the excitation point was demonstrated to be
negligible [20,41]. In mid- and high-frequency range, the modal density within a considered
frequency band is high. The analytical expressions for the radiation efficiency averaged over a
frequency band were derived for plates with high modal densities [8,18,19].
In this paper, the added mass effect of the heavy fluid loading and the radiation damping effect

are incorporated in the existing EFEA formulation for dry structures for computing the high-
frequency vibration of structures comprised by thin plates in contact with a heavy fluid on one
side. The procedure is similar to the manner suggested by Crighton [30] for incorporating the
heavy fluid loading effect in an SEA formulation. The plate equations under fluid loading [21] are
employed for defining a basis of orthogonal waves in the plate. The orthogonal waves constitute a
basis for expressing the behavior of the plate similar to the modal basis employed in the definition
of each SEA subsystem. The energy associated with the response of a plate is derived by adding
incoherently the energy of the orthogonal waves of the basis [2,42,43]. Thus, an energy density
variable comprises the primary variable of the EFEA similar to the energy of a subsystem being
the primary variable in SEA. The intensity of the response of a plate is also derived in a similar
manner as resultant from incoherent orthogonal waves. A relationship between the energy density
and the intensity is derived by considering their expressions in terms of the orthogonal waves [2,3].
From the power balance over a control volume, the relationship between energy density and
intensity, and the relationship between energy density and dissipated power, the EFEA governing
differential equation is formulated in terms of the energy density. A finite element approach is
employed for producing the numerical system of equations. The heavy fluid effect and the
radiation damping are included in the derivation process by using the effective mass and the total
damping factor in the EFEA governing differential equation. The total damping factor includes
both structural and radiation damping. The frequency averaged radiation efficiency model from
Ref. [19] is employed in this EFEA formulation. The effective mass is employed for deriving the
radiation damping from the radiation efficiency, similar to the approach presented in Ref. [20].
The primary variable of the EFEA is discontinuous at joints between components. Power

transfer coefficients are utilized for coupling the energy density across a joint. A formulation for
power transfer coefficients of plates under heavy fluid loading is also developed. The method
presented in Ref. [44] for computing power transfer coefficients between plates at joints is
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modified in order to take into account that some of the members at a joint can be in contact with
heavy fluid. The power transfer coefficients are evaluated from analytical solutions of semi-infinite
members that demonstrate the same structural characteristics with the members for which the
power transfer coefficients are computed. The heavy fluid loading effect is included in the
derivation of the power transfer coefficients by modifying appropriately the flexural wavenumbers
of the members which are in contact with heavy fluid.
The validity of the new EFEA formulation that includes the heavy fluid loading effect is

demonstrated by comparing EFEA solutions to results obtained by classical techniques such as
the SEA and the modal decomposition method for bodies of revolution. Comparison of the
EFEA results with data from a very dense conventional FEA model is also included in this
validation. A plate in contact with water on one side, a cylindrical structure immersed into water
and a small undersea vehicle are analyzed. The comparison is performed over a frequency range
where the modal decomposition method, the EFEA method, and the SEA method are valid.

2. Overview of vibration characteristics of a thin plate under heavy fluid loading

The equations associated with the vibration of a thin plate under heavy fluid loading are
summarized first. They are employed for defining the basis of orthogonal waves used in the
derivation of the EFEA governing differential equation. Considering an infinite thin plate under
heavy fluid loading (Fig. 1), the in-plane and the flexural displacement are not coupled and the
fluid motion is only coupled with the flexural displacement. The governing equation of motion for
the flexural displacement is [21,30]

Dð1þ iZdampÞr
4w þ m

@2w

@t2
¼ �pz¼0; ð1Þ

where D is the bending stiffness of the plate, Zdamp is the structural damping factor, m ¼ rsh is the
plate surface mass density, (rs is the plate mass density and h is the plate thickness), and pz¼0 is the
pressure exerted by the fluid on the vibrating plate. For steady state conditions, the amplitude P of
the pressure pz¼0 is a solution to the Helmholtz equation

ðr2 þ k2ÞP ¼ 0; ð2Þ

where k is the acoustic wavenumber. For an infinite plate, an expression for the farfield solution of
the flexural displacement of Eq. (1) in the x direction is [21]

w ¼ We�igxeiot; ð3Þ

Fig. 1. Free Vibration of an infinite thin elastic plate exposed to heavy fluid loading from one side.
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where g is defined as the flexural wavenumber of a plate under fluid loading, and W is the wave
amplitude. Similarly, a farfield solution for the pressure in Eq. (2) is

P ¼ p0e
ikxxeikzz; ð4Þ

where p0 is defined as the pressure at the origin, kx; kz are the components of the acoustic
wavenumber in the x and z directions. The wave expressions in Eqs. (3) and (4) include only
farfield terms because at high frequencies the dimension of the plate is considerably larger than the
wavelength and any near field effects are considered negligible. The sound field is linked to the
structural wave motion through a boundary condition requiring that the normal component of
the acceleration is continuous at the interface between the fluid and the structure:

1

r
@p

@z
¼ io

@w

@t
; ð5Þ

where r is the fluid mass density. The dispersion relation is obtained from Eqs. (1) to (5):

Dð1þ iZdampÞg
4 � mo2 �

o2r

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � g2

p ¼ 0; ð6Þ

where g is a solution to Eq. (6). A valid approximate solution for g is obtained by introducing
g ¼ kf in the denominator of the third term in Eq. (6) [21], where kf is the flexural wavenumber of
a plate in vacuum and kf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=DÞo24

p
: Therefore, Eq. (6) can be rewritten as

Dð1þ iZdampÞg
4 � mo2 �

o2r

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

f

q ¼ 0: ð7Þ

The nature of the solution to Eq. (7) depends on the relative value between k and kf : If kokf ; then
the vibration frequency is below the coincidence frequency, and the solution is

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

Dð1þ iZdampÞ
o2 1þ

r

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f � k2
q

0
B@

1
CA

4

vuuuut ð8Þ

The effective surface mass density can be defined as

meff ¼ m 1þ
r

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f � k2
q

0
B@

1
CA: ð9Þ

By considering light structural damping, g can be approximated by a Taylor expansion from
Eq. (8) as

gD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff

D
o24

r
1� i

Zdamp

4

� �
: ð10Þ
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If k > kf ; the vibration frequency is above the coincidence frequency, and the solution for g is

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

Dð1þ iZdampÞ
o2 1� i

r

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

f

q
2
64

3
75

4

vuuuut : ð11Þ

By defining the radiation damping factor as

Zrad ¼
r

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

f

q ð12Þ

and assuming light structural damping, g can be approximated from Eq. (11) as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

Dð1þ iZdampÞ
o2½1� iZrad �

4

r
D

ffiffiffiffiffiffiffiffiffiffiffi
m

D
o24

r
1� i

ðZdamp þ ZradÞ

4

� �
: ð13Þ

The total damping factor is defined as the sum between structural damping and radiation
damping, Z ¼ Zdamp þ Zrad ; and Eq. (13) can be rewritten as

gD

ffiffiffiffiffiffiffiffiffiffiffi
m

D
o24

r
1� i

Z
4

h i
: ð14Þ

Eqs. (10) and (14) provide the expressions for the plate flexural wavenumber under heavy fluid
loading at different frequency ranges. Since structural damping is considered, the flexural
wavenumber is complex in both frequency ranges. When the frequency range is below the
coincidence frequency, the effective surface mass density is employed instead of the dry surface
mass density. When the frequency range is above the coincidence frequency, the total damping
factor is used instead of the structural damping factor. Eqs. (10) and (14) reflected the heavy fluid
effect on the plate vibration characteristics of an infinite plate. For a finite plate, acoustic energy
radiates into the fluid even for frequencies below the coincidence frequency due to edge and
corner effects [18]. Eq. (10) is modified to include the radiation effect for a finite plate. Andresen
[20] recently presented a numerical method for determining the radiation damping factor for
point excited plates with heavy fluid loading. Radiation parameters in an SEA analysis was used
to compute the noise radiated from the hull of a ship, and the results had reasonable correlation to
test data. The radiation coefficient for a 10mm thick steel plate with dimensions equal to
0.6m	 1.5m was presented in Ref. [20]. The radiation coefficient for the same plate is evaluated
by frequency averaged radiation efficiency models presented by Davies [8], Maidanik [18] and
Leppington et al. [19]. The results are summarized in Fig. 2. The results by the Davies model and
the Maidanik model are indistinguishable below B1000Hz. Based on these results, Leppington’s
model appears to agree better with the radiation damping presented in Ref. [20] and it is employed
in this paper. The radiation from the flexural near field around the excitation point is small and
neglected since high modal densities and light structural damping within the plate are considered
in high-frequency vibration [20,41]. Below the coincidence frequency, the radiation efficiency from
Leppington’s model is

srad ¼
a þ b

pmkabðm2 � 1Þ1=2
ln

mþ 1

m� 1

� �
þ

2m
m2 � 1

� �
; m > 1; ð15Þ
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where a and b are the length and width of the plate, m ¼ kf =k is the wavenumber ratio. The
radiation damping factor can be derived directly from radiation efficiency as Zrad ¼
ðrc=ðomÞÞsrad : Considering the heavy fluid loading effect, Andresen [20] utilized the effective
surface mass density of a plate for computing the radiation damping factor from the radiation
efficiency. In a similar manner, in this work Eq. (15) is used to compute the radiation efficiency for
a finite plate below coincidence frequency, and the radiation damping factor is evaluated using the
effective surface mass density:

Zrad ¼
rc

omeff

srad : ð16Þ

Therefore, for a finite plate, Eq. (10) is modified by including the radiation damping factor derived
from Eq. (16):

gD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff

D
o24

r
1� i

Zdamp þ Zrad

4

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff

D
o24

r
1� i

Z
4

� �
: ð17Þ

In summary, the effect of the heavy fluid loading below the coincidence frequency is expressed in
terms of the effective surface mass density (Eq. (9)) and the radiation damping (Eqs. (16) and
(17)). Above the coincidence frequency the fluid loading effect is expressed only in terms of the
radiation damping factor defined in Eq. (14).

Fig. 2. Radiation coefficients computed by different analytical models for a 0.6m	 1.5m	 0.01m steel plate in contact

with water: ——, Leppington; - - - - -, Andresen; - 
 - 
 -, Maidanik; - 
 
 - 
 
 -, Davies.
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3. Development of the energy finite element formulation of finite thin plates under heavy fluid loading

3.1. Derivation of the energy governing equation for finite thin plates under heavy fluid loading

The flexural displacement of a finite thin plate under heavy fluid loading can be considered as a
linear superposition of waves associated with any two orthogonal directions x and y [2,3]:

wx ¼ ðAxe
�igxx þ Bxe

igxxÞeiot; ð18Þ

wy ¼ ðAye
�igyy þ Bye

igyyÞeiot ð19Þ

where Ax; Ay; Bx; By are constants associated with the waves in x and y directions, gx and gy are
the complex flexural wavenumbers of the plate under fluid loading,

gx ¼ gx1 1� i
Z
4

� �
; gy ¼ gy1 1� i

Z
4

� �
ð20Þ

and

gx1 ¼ gy1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff

D
o24

r
; Z ¼ Zdamp þ Zrad : ð21Þ

An expression for the energy density and the intensity is derived for each one of the two
orthogonal waves. The derivation associated with the wave in the x direction is discussed in detail.
The corresponding energy variables for the y direction are derived in a similar manner. The time
averaged over a period energy density and intensity are expressed in terms of the displacement:

/exS ¼
D

4

@2wx

@x2

@2wx

@x2

� ��

þ
meff

D

@wx

@t

@wx

@t

� ��
" #

; ð22Þ

/IxS ¼
D

2
Re

@2wx

@x2

@2wx

@x@t

� ��

þ
@3wx

@x3

@wx

@t

� ��
" #

: ð23Þ

In Eq. (22) the effective surface mass density is used for considering the added mass effect due to
the heavy fluid when computing the energy density. The wave equation (18) is introduced into
Eqs. (22) and (23). Neglecting higher order damping terms, and space averaging over a
wavelength results in

/
%
exS ¼

D

4
g4x1 þ

meff

D
o2

� �
ðA2

xe
�ðZ=2Þgx1x þ B2

xe
ðZ=2Þgx1xÞ

h i
; ð24Þ

o
%
Ix >¼ Dg3x1oðA

2
xe

�ðZ=2Þgx1x � B2
xe

ðZ=2Þgx1xÞ: ð25Þ

The time averaged over a period and space averaged over a wavelength energy density and
intensity of the flexural waves constitute the primary energy variables of the EFEA plate
formulation. The energy density and the intensity associated with the y direction are expressed by
a similar set of equations.
The vibration of the plate is considered as incoherent since at high frequencies the flexural

wavelength is small compared to the dimension of the plate and the multiple reflections from the
boundaries in combination with light damping create an incoherent field. Therefore, the total
energy density and intensity can be obtained from a linear superposition of the partial energy
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density and intensity for the incoherent wave field [2,42,43]. Thus,

/
%
eS ¼ /

%
exSþ/

%
eyS ¼

D

2
g4x1ðA

2
xe

�ðZ=2Þgx1x þ B2
xe

ðZ=2Þgx1xÞ þ g4y1ðA
2
ye

�ðZ=2Þgy1y þ B2
ye

ðZ=2Þgy1yÞ
h i

;

ð26Þ

/~IIS ¼ /
%
IxS~ii þ/

%
IyS~jj ¼ Do g3x1 A2

xe
�ðZ=2Þgx1x � B2

xe
ðZ=2Þgx1x

� �
~ii þ g3y1 A2

ye
�ðZ=2Þgy1y � B2

ye
ðZ=2Þgy1y

� �
~jj

h i
:

ð27Þ

By observing the similarities between Eqs. (26) and (27), a relationship between the energy density
and the intensity is derived:

/~IIS ¼ �
ðcgÞ

2
eff

Zo
r/

%
eS; ð28Þ

where ðcgÞeff ¼ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD=meff Þo24

p
; is defined as the effective group velocity of plate under heavy

fluid loading. The EFEA differential equation for a plate is derived by considering a power
balance at the steady state over a differential control volume of the plate [41]:

/PinS ¼ /PdissSþr/~IIS; ð29Þ

Where /PdissS is the time and space averaged dissipated power. A relationship similar to the one
for the dissipated acoustic energy density can be derived for the flexural energy density of the
plate:

/PdissS ¼ Zo/
%
eS: ð30Þ

Substituting Eqs. (28) and (30) into Eq. (29) results in the EFEA governing differential equation
for the plate under heavy fluid loading:

�
ðcgÞ

2
eff

Zo
r/

%
eSþ Zo/

%
eS ¼ /PinS: ð31Þ

Compared to the EFEA governing differential equation in vacuum [25], the effective group
velocity instead of the normal group velocity and the total damping factor instead of the
structural damping factor are used in Eq. (31). The modifications originate from the heavy fluid
effects. A finite element formulation [25] is employed for solving Eq. (31) numerically.

3.2. Power transfer coefficients for plates under fluid loading

The energy density is discontinuous at connections between members. A joint matrix derived
from the power transfer coefficients is utilized for coupling the energy density variables across a
joint. The power transfer coefficients are evaluated from analytical solutions of semi-infinite
members that demonstrate the same structural characteristics with the components for which the
power transfer coefficients are computed. The method developed by Langley and Heron [44] for
computing the power transfer coefficients between dry plates is expanded in order to include the
fluid loading effects in the derivation of the power transfer coefficients.
A general junction of N semi-infinite plates with some plates in contact with a dense fluid is

depicted in Fig. 3(a). The position of the jth pate is defined by the angle yj; which is the angle
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between the global z-axis and the local z-axis. The in-plane displacements (u, v) and flexural
displacement (w) of each plate are related by the compatibility condition at the junction. The
displacements (u; v;w) of each plate are defined with respect to a local co-ordinate system (x; y; z).
The governing differential equations of motion for the jth plate are:

Djr4w þ mj
@2w

@t2
¼

0; without fluid loading;

�pz¼0; with fluid loading;

(
ð32Þ

Ejhj

1� n2j

@2u

@y2
þ

Ejhj

2ð1þ njÞ
@2u

@x2
þ

Ejhj

2ð1� njÞ
@2v

@x@y
� mj

@2u

@t2
¼ 0; ð33Þ

Ejhj

1� n2j

@2v

@y2
þ

Ejhj

2ð1þ njÞ
@2v

@x2
þ

Ejhj

2ð1� njÞ
@2u

@x@y
� mj

@2v

@t2
¼ 0; ð34Þ

where Dj is the flexural rigidity, mj the mass per unit area, Ej the Young’s modulus, vj the poisson
ratio and hj the plate thickness. The fluid loading affects only the bending governing differential
equation. The structural damping is neglected in the derivation of the power transfer coefficients.
The displacement and the corresponding tractions that act at the edge of a plate at a joint are

Fig. 3. (a) A general N-plate junction with some plates in contact with dense fluid on one side; (b) co-ordinate system,

displacement and tractions for plate j.
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presented in Fig. 3(b). Vector F ¼ ðFx;Fy;Fz;MÞT represents the resultant force and bending
moment per unit length along the edge of the joint between all the plates, and Fj ¼ ðTj;Nj;Sj;MjÞ

T

represents the tractions which act at the edge of plate j at the joint. F can be computed by
summing Fj in the form

F ¼
XN

j¼1

RjFj; ð35Þ

where the transformation matrix Rj is equal to

Rj ¼

1 0 0 0

0 cos yj �sin yj 0

0 sin yj cos yj 0

0 0 0 1

0
BBB@

1
CCCA ð36Þ

In addition, the displacement a ¼ ðu; v;w; yÞ of the joint in the global co-ordinate system, and the
displacement bj ¼ ðuej; vej;wej; yejÞ of the edge of the plate j in the local co-ordinate system, satisfy
the compatibility conditions

bj ¼ RT
j a; ð37Þ

where Rj is given in Eq. (36). Eqs. (32)–(37) are used to derive the power transfer coefficients for
the joint between the plates. An incident wave is considered to propagate towards the joint in one
of the plates. At the joint the wave is partly reflected in the incident plate and partly transmitted
to all of the other plates. Considering the space/time dependency of the incident wave as
expð � ikx þ imy þ iotÞ; the compatibility at the junction implies that the response in all the plates
must have the dependency of expð�ikx þ iotÞ: The dependency with respect to the y coordinate is
determined from the plate equations of motion. Assuming that the bending displacement of plate j
has a y dependency of expðmf yÞ; Eq. (32) implies that mf must satisfy the equation

m2f ¼
k27k2

f ; without fluid loading;

k27g2; with fluid loading;

(
ð38Þ

where kf and g are defined in Section 2. Therefore, the bending response can be expressed as

w ¼
X2
n¼1

afnexpð�ikx þ mfny þ iotÞ; ð39Þ

where af 1 and af 2 are the amplitudes of the bending response, mf 1 and mf 2 are two valid roots of
Eq. (42) and depend on the relative values of k and kf or k and g: Since the equations of the in-
plane motion are not modified by the heavy fluid loading, the expression of the in-plane response
is the same as the one presented in Ref. [44]:

u

v

 !
¼ aL

k

imL

 !
emLy þ aS

imS

�k

 !
emSy

( )
expð�ikx þ iotÞ; ð40Þ

where aL; aS are the amplitudes of the bending response, mf 1 and mf 2 are two roots computed by
Eqs. (33) and (34). Thus, the equation that determines the global displacement of the common
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edge is derived according to Ref. [44]:

XN

j¼1

RjKjR
T
j

( )
a ¼ Rmfm; ð41Þ

where Kj is defined as the dynamic stiffness matrix and subscript ‘‘m’’ identifies the plate that
carries the incident wave. The power transfer coefficients are derived from the following
procedure. The edge displacement of each individual plate ðuej; vej;wej; yejÞ is recovered from
Eq. (37). The amplitude of the bending and the in-plane components of the response
ðaf 1; af 2; aL; aSÞ are computed from the edge displacement field. The wave transmitted to each
plate is determined by the imaginary parameters (mf 1;mf 2; mL; mS), which govern the y dependency
of the transmitted response and the transmitted heading angle is computed as fr ¼ cos�1ðk=krÞ;
where r can be any of the subscripts f, L or S. Finally, the magnitude of the power of each
propagating wave is calculated by the expressions

Pf ¼ ðrjo
3a2f =kBÞsin f; PL ¼ 1

2
rjo

3kLa2L sin f; PS ¼ 1
2
rjo

3ksa2S sin f: ð42Þ

The power transfer coefficients associated with each generated wave are calculated as the ratio
between the power of the generated wave over the power of the wave incident to the joint. The
complete set of transmission coefficients for a joint is written in the form ½t�eff where subscript
‘‘eff’’ indicates that the heavy fluid loading effect is included in the derivation. The joint matrices
in the EFEA formulation define the power transfer across elements at the joints and are derived
from the power transfer coefficients [26]

½J�eff ¼ ð½I � � ½t�eff Þð½I � þ ½t�eff Þ
�1

Z
B

fifjdB; ð43Þ

where fi; fj are Lagrangian basis functions, and B is the boundary area between elements i and j

at the joint. Thus, the fluid loading effects are finally included in the derivation of the joint
matrices and in the power transfer mechanism in the EFEA system of equations. The final system
of EFEA equations is obtained from Eqs. (31) and (43):

½½E�eff þ
X

½J�eff �fo
%
e >g ¼ ff g; ð44Þ

where ½E�eff is the system matrix derived from left-hand side of Eq. (31), {f} is the vector related to
input power in Eq. (31), and S indicates the addition of the joint matrices that correspond to all
the joints in the model to the EFEA system matrix ½E�eff :

4. Validation

In order to validate the new EFEA formulation that includes fluid loading effects in the
computations, EFEA results are compared to classical techniques such as the SEA and the modal
decomposition method for bodies of revolution. An implementation of the azimuthal modal
decomposition method combined with a high order structural finite element and infinite finite
elements in the radial direction (SONAX [45]) is utilized in the validation. Comparison of
the EFEA results with data from a very dense conventional FEA model is also utilized in the
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validation. A flat plate in contact with water from one side, a cylindrical structure immersed in
water and a small undersea vehicle are analyzed.

4.1. A plate in contact with water from one side

The dynamic response of a thin steel plate with free edge boundary conditions, exposed to a
half-space of water, and excited by a time-harmonic point force applied at its center is analyzed
(Fig. 4). A similar problem has been analyzed in the past for investigating the effect of fluid
loading on plate vibration [46]. The results from the EFEA analysis are compared to the
conventional FEA method. The virtual mass method in MSC/NASTRAN [32] is used for
the FEA analysis. Since the fluid is assumed to be incompressible in the virtual mass method, only
the added mass effect is captured by the FEA analysis. In order to include the radiation damping
in the FEA analysis, the frequency-dependent radiation damping factors are computed by
Eq. (22) and added to the structural damping of the FEA model. Energy parameters are derived
from the discrete vibration computed by the FEA in order to compare the results to the EFEA.
The comparison between the two methods is performed at a high enough frequency in order for
the EFEA computations to be meaningful. Thus, the FEA model contains a large number of
elements in order to provide reliable results at high frequency.
The dimensions of the plate are 0.455m	 0.375m and its thickness is 1mm. The amplitude

of the external force is 1N, and the material properties for the plate and the water are listed in
Tables 1 and 2, respectively. Analyses are performed for all the 1

3
octave bands between 100 and

Fig. 4. A rectangular thin elastic plate exposed to heavy fluid loading from one side with time-harmonic point force

excitation at the center.

Table 1

Material properties of the rectangular plate

Young’s modulus (pa) 2.07E+11

Density (kg/m3) 7800.0

The Poisson ratio 0.333

Damping loss factor 0.01
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4000Hz. Since the coincidence frequency of the plate is about 220 kHz, the frequency range
analyzed is far below the coincidence frequency. The FEA model utilizes 3000 elements. FEA
results are computed at frequency intervals of B4Hz. In order to produce energy variables from
the FEA analyses, the discrete vibration is utilized for computing the space averaged flexural
energy density for the plate. The FEA results for the energy density are frequency averaged for
each 1

3
octave frequency band. The radiation damping factors are added to the structural damping

in the FEA analyses. The EFEA model is utilized 100 elements and the external input power
defines the excitation for each 1

3
octave band. The input power can be expressed as

Pin ¼ 1
2
ReðFV �Þ or Pin ¼ 1

2
jF j2ReðAf Þ; ð45Þ

where F is the external applied force, V� is the conjugate of the velocity of the driving point, and
Af is the admittance at the driving point. Two approaches are utilized for computing the input
power. First, the vibration at the driving point computed by the FEA with the specified radiation
damping model is employed in Eq. (45) for evaluating the power input into the system. As an
alternative, the driving point admittance of an infinite plate derived by the classical technique [12]
is employed in Eq. (45) for estimating the input power. Approximating the admittance of a finite
system with the admittance of an infinite system is typical for high-frequency analyses [47]. The
equation for the driving point admittance below the coincidence frequency is [12]

Af ¼
1

8ðrshDÞ1=2

 !
4

5

k

nkf

� �2=5

1� i tan
p
10

� �
; foofc; ð46Þ

where n ¼ rk=ðrshk2
f Þ. The input power by the FEA method and the input power evaluated by the

classical technique of driving point admittance of an infinite thin plate under fluid loading are
presented in Fig. 5. Good correlation between these two methods indicates that the input power
which is computed based on the radiation damping model utilized in this work agrees well with
the input power predicted by the classical solution. Then, the frequency averaged input power
computed by the FEA method is utilized in the EFEA computations. The mean quadratic velocity
computed by the EFEA formulation and FEA method are presented in Fig. 6. The FEA and
EFEA results correlate well, particularly in the frequency range between 315Hz and 2000Hz. For
frequencies beyond this range, differences occur because either the EFEA does not capture the
low-frequency dynamic response well or because the FEA method does not capture accurately the
high-frequency vibration. The good correlation between the FEA and EFEA results demonstrates
that the effective mass effect due to fluid loading is captured correctly in the EFEA equations and
in the corresponding numerical implementation.

Table 2

Properties of the fluid medium (water)

Density (kg/m3) 1000.0

Sound speed (m/s) 1500.0
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4.2. A cylindrical structure immersed into water

A cylindrical structure immersed in water is analyzed by the new EFEA formulation. Two
common approximations for high-frequency vibration of cylindrical structures are adopted here.
The vibrational behavior of the cylindrical structure is considered generally governed by the
closely spaced flexural resonance [48,49]. The dispersion relation for a particular waveguide mode

Fig. 5. Input power computed by a classical technique and by the FEA method with the radiation model utilized in this

work: ——, classical technique; - - - - - -, FEA with specified radiation model.

Fig. 6. Comparison of the mean square velocity response of the free rectangular plate under heavy fluid loading: ——,

EFEA; - - - - - - -, dense FEA.
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and the general behavior of the fluid loading for the cylindrical geometry are considered to be
similar to the planar case [49–51]. The curved surface of the cylinder is modelled by sections of flat
plate EFEA elements connected at appropriate angles. The coupling among the in-plane and
flexural energy densities of connected sections of elements are accounted by the joint formulation.
The model for the EFEA formulation is presented in Fig. 7, and is comprised of 360 elements and
300 joints. For comparison, the structure is also analyzed by SONAX [45]. The axisymmetrical
SONAX model (Fig. 8) contains 269 structural elements, 538 interface elements, and 1883 fluid
elements. The thickness of the structure is 5mm, the length is 6.6m, and the inner diameter is
0.6m. The material properties for the structure and the surrounding acoustic medium are listed in
Tables 1 and 2. The coincidence frequency for a plate with similar properties is about 45 kHz. In
order to process and compare the results the structure is divided into seven components (Fig. 7).
An axisymmetric excitation is applied in the middle of component 3. Analyses are performed over
the 1

3
octave bands from 500 to 1600Hz. Both methods are expected to provide results valid for

comparison over the frequency range 1000 to 1600Hz. EFEA analyses are performed at lower

Fig. 7. Energy finite element model of the cylinder.

Fig. 8. Axisymmetric finite element model of the cylinder.
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Fig. 9. Bending energy density ratio between part 2 and part 3: ——, EFEA; - - - - - -, axisymmetrical FEA.

Fig. 10. Bending energy density ratio between part 4 and part 3: ——, EFEA; - - - - - -, axisymmetrical FEA.
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Fig. 11. Bending energy density ratio between part 5 and part 3: ——, EFEA; - - - - - -, axisymmetrical FEA.

Fig. 12. Bending energy density ratio between part 6 and part 3: ———, EFEA; - - - - - -, axisymmetrical FEA.
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frequencies in order to demonstrate the inability of the high-frequency method to capture the
structural vibration at low frequencies. The flexural energy density ratios between the receiving
and the externally excited component are computed by both methods. FEA analyses are
performed at B5Hz frequency intervals. The FEA results are frequency averaged over each 1

3
octave in order to be compared properly with the EFEA results. Results for the four cylindrical
components are presented in Figs. 9–12. The two end caps do not include enough wavelengths
within their dimension in order to be properly analyzed by EFEA, thus the corresponding results
are not considered. The effect of the heavy fluid loading is accounted in both methods. In EFEA
the fluid loading is accounted through the added mass, the radiation damping, and in the
derivation of the power transfer coefficients, while the SONAX software is based on an azimuthal
modal decomposition method combined with structural, fluid and infinite fluid finite elements.
The results demonstrate reasonable correlation between the two methods. This is an indication
that all of the fluid loading effects are accounted and implemented properly in the EFEA
formulation.

4.3. A small undersea vehicle

In order to further validate the EFEA developments, a small undersea vehicle is analyzed by the
EFEA formulation, the SEA method, and SONAX. The models for the three analyses are
presented in Figs. 13–15, respectively. The vehicle is 6m long and the maximum inner diameter is
0.524m. The thickness of the vehicle skin is 1 cm, and all four bulkheads have the same thickness
2.54 cm. The EFEA model is comprised by 1060 elements and 600 joints. The SEA model includes
10 subsystems. The SONAX model contains 285 structural elements, 486 interface elements, and
3645 fluid elements. The fluid material is listed in Table 2 and the materials of the structure is
listed in Table 3. The coincidence frequency for a flat plate with similar material properties is
about 23 kHz. The high-frequency approximation stated in the analysis of the cylindrical structure

Fig. 13. Energy finite element model of the small undersea vehicle.
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are considered applicable to the current analysis. The vehicle is divided into five components by
the four bulkheads (Fig. 13) and an axisymmetric excitation is applied in the middle of component
3. Analyses are performed over the 1

3
octave bands between 500 and 4000Hz. In order to identify a

frequency range where the two high-frequency methods (EFEA and SEA) are expected to provide
similar results to the SONAX solution, the profile of the vibration along the length of the vehicle
is presented in Fig. 16 for three different frequencies. It can be observed that only fromB1500Hz
and above there are enough wavelengths in the structure for the high-frequency methods to be
valid. It is also demonstrated that the near field response in the vicinity of the excitation is

Fig. 14. SEA model of the small undersea vehicle.

Fig. 15. Axisymmetrical finite element model of the small undersea vehicle.

Table 3

Material properties of the small undersea vehicle

Young’s modulus (pa) 7.0E+10

Density (kg/m3) 2800.0

The Poisson ratio 0.3

Damping loss factor 0.01
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Fig. 16. Vibration profile along the length of the vehicle at three frequencies: (a) 500Hz, 1413Hz, (c) 3548Hz.

Fig. 17. Energy density ratio between part 1 and part 3: ——, EFEA; - - - - - -, axisymmetrical FEA; - 
 - 
 -, SEA.
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Fig. 18. Energy density ratio between part 2 and part 3: ——, EFEA; - - - - - - -, axisymmetrical FEA; - 
 - 
 -, SEA.

Fig. 19. Energy density ratio between part 4 and part 3: ——, EFEA; - - - - - - -, axisymmetrical FEA; - 
 - 
 -, SEA.
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negligible at high frequency since many modes are contributing to the vibrational field. Results for
the energy density ratio between the four cylindrical components and the component where the
excitation is applied are presented in Figs. 17–20. The results demonstrate good correlation
between the three methods at the frequency above 1500Hz. Several advantages are associated
with the new EFEA formulation. The computational time is much reduced compared to a
SONAX analysis at high frequencies. Specially for one 1

3
octave frequency the total CPU time for

SONAX on Sun Ultra 10 workstation was B2000 s while the EFEA computation required
B120 s on a personal computer with Pentium III. The variation of the energy distribution within
each component can be computed by EFEA. This constitutes an improvement over the lumped
parameter SEA method. The external input power and the damping treatment can be applied at a
local level in EFEA, while the SEA method considers these parameters distributed equally over an
entire subsystem. Therefore, the new EFEA formulation provides an improved method for high-
frequency vibration of plates under heavy fluid loading.

5. Conclusions

An EFEA formulation for analyzing the high-frequency vibration of thin elastic plates in
contact with dense fluid is presented. The added mass and the radiation effects are included in the
derivation of the EFEA governing differential equation. The fluid loading effect is also accounted
for in the derivation of the power transfer coefficients and the derivation of the joint EFEA
matrices. The new EFEA formulation and its implementation are validated by comparing EFEA

Fig. 20. Energy density ratio between part 5 and part 3: ——, EFEA; - - - - - -, axisymmetrical FEA; - 
 - 
 -, SEA.
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results to solutions obtained by very dense conventional FEA models and results obtained by
classical solutions such as the SEA and the modal decomposition method. Good correlations are
observed between the new EFEA solution and the other established solutions in intermediate
frequency ranges where all methods are valid. The advantages of the EFEA formulation are
outlined. Overall, it is demonstrated that the new EFEA formulation captures properly the fluid
loading effects.
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